8 research outputs found

    Vision Based Control of Model Helicopters

    Get PDF

    Vision based control of unmanned aerial vehicles with applications to an autonomous four -rotor helicopter, quadrotor

    No full text
    Our work proposes a vision-based stabilization and output tracking control method for a model helicopter. This is a part of our effort to produce a rotorcraft based autonomous Unmanned Aerial Vehicle (UAV). Due to the desired maneuvering ability, a four-rotor helicopter has been chosen as the testbed. On previous research on flying vehicles, vision is usually used as a secondary sensor. Unlike previous research, our goal is to use visual feedback as the main sensor, which is not only responsible for detecting where the ground objects are but also for helicopter localization. A novel two-camera method has been introduced for estimating the full six degrees of freedom (DOF) pose of the helicopter. This two-camera system consists of a pan-tilt ground camera and an onboard camera. The pose estimation algorithm is compared through simulation to other methods, such as four-point, and stereo method and is shown to be less sensitive to feature detection errors. Helicopters are highly unstable flying vehicles; although this is good for agility, it makes the control harder. To build an autonomous helicopter, two methods of control are studied—one using a series of mode-based, feedback linearizing controllers and the other using a back-stepping control law. Various simulations with 2D and 3D models demonstrate the implementation of these controllers. We also show global convergence of the 3D quadrotor controller even with large calibration errors or presence of large errors on the image plane. Finally, we present initial flight experiments where the proposed pose estimation algorithm and non-linear control techniques have been implemented on a remote-controlled helicopter. The helicopter was restricted with a tether to vertical, yaw motions and limited x and y translations

    Vision based control of unmanned aerial vehicles with applications to an autonomous four -rotor helicopter, quadrotor

    No full text
    Our work proposes a vision-based stabilization and output tracking control method for a model helicopter. This is a part of our effort to produce a rotorcraft based autonomous Unmanned Aerial Vehicle (UAV). Due to the desired maneuvering ability, a four-rotor helicopter has been chosen as the testbed. On previous research on flying vehicles, vision is usually used as a secondary sensor. Unlike previous research, our goal is to use visual feedback as the main sensor, which is not only responsible for detecting where the ground objects are but also for helicopter localization. A novel two-camera method has been introduced for estimating the full six degrees of freedom (DOF) pose of the helicopter. This two-camera system consists of a pan-tilt ground camera and an onboard camera. The pose estimation algorithm is compared through simulation to other methods, such as four-point, and stereo method and is shown to be less sensitive to feature detection errors. Helicopters are highly unstable flying vehicles; although this is good for agility, it makes the control harder. To build an autonomous helicopter, two methods of control are studied—one using a series of mode-based, feedback linearizing controllers and the other using a back-stepping control law. Various simulations with 2D and 3D models demonstrate the implementation of these controllers. We also show global convergence of the 3D quadrotor controller even with large calibration errors or presence of large errors on the image plane. Finally, we present initial flight experiments where the proposed pose estimation algorithm and non-linear control techniques have been implemented on a remote-controlled helicopter. The helicopter was restricted with a tether to vertical, yaw motions and limited x and y translations

    Control of a quadrotor helicopter using visual feedback

    No full text
    We present control methods for an autonomous four-rotor helicopter, called a quadrotor, using visual feedback as the primary sensor. The vision system uses a ground camera to estimate the pose (position and orientation) of the helicopter. Two methods of control are studied - one using a series of mode-based, feedback linearizing controllers, and the other using a backstepping-like control law. Various simulations of the model demonstrate the implementation of feedback linearization and the backstepping controllers. Finally, we present initial flight experiments where the helicopter is restricted to vertical and yaw motions

    Aricopter : Aerobotic Platform for Advances in Flight, Vision Controls and Distributed Autonomy

    No full text
    Abstract-Aricopter is a COTS micro-helicopter heavily modified for research on embedded flight and vision controls, and distributed autonomy. In this work, we present an overview of the exciting development process of the flight hardware, the micro-avionics system, and the offboard vision implementations

    Testicular Size and Vascular Resistance Before and After Hydrocelectomy

    No full text
    OBJECTIVE. We sought to determine whether there is an association between hydroceles and testicular size and vascular resistance
    corecore